Enjoy any 5 free lessons!
You can pick. No account needed.
Watch VideoBecome a member to get full access to our entire library of learning videos, reading material, quiz games, simple DIY activities & more.
Become a member to get full access to our entire library of learning videos, quiz games, & more.
Plans & Pricingto watch this full video.
Access All Videos
and Lessons, No Limits.
Access All Videos
No credit card required,
takes 7 sec to signup.
No card required
Ready-to-go lessons
that save you time.
Ready-to-go lessons
If you are on a school computer or network, ask your tech person to whitelist these URLs:
*.wistia.com, fast.wistia.com, fast.wistia.net, embedwistia-a.akamaihd.net
Sometimes a simple refresh solves this issue. If you need further help, contact us.
Solve Problems with Decimals (Using Models)
- Show lesson plan & teacher guide
- Show answers to discussion questions
- Show video only
- Allow visiting of other pages
- Hide assessments
- We’ll add, subtract, multiply and divide decimals using models.
- We will also learn how to use estimation to decide if our answer is reasonable.
- And that this knowledge can help us feed our pets, go hiking and even grow crystals!
-
Discussion Questions
-
Before VideoGive the value of each digit in 5.39.ANSWER
-
5 wholes, 3 tenths, and 9 hundredths
-
Every 10 hundredths can be regrouped as 1 tenth. So, 56 hundredths is 5 tenths and 6 hundredths.
-
Every 10 tenths can be regrouped as 1 whole. So, 48 tenths is 4 wholes and 8 tenths.
-
If I divide 63 wholes equally among 9 groups, each group has 7 wholes. 63 ÷ 9 = 7.
-
I can round 58 to 60, and 32 to 30. 60 × 30 is 1,800, which is close to 1,856. This is how I know my answer makes sense.
-
-
After VideoIf you are calculating 3.64 – 2.14, which number should you represent using the fraction square model? What is the second step? ANSWER
-
The greater number, 3.64. Then, take away blocks that represent 2.14 in total.
-
I don’t have enough tenths to subtract 8 tenths, so I need to regroup 1 of the wholes as 10 tenths. Then, I have 2 wholes and 14 tenths. Now I can subtract 8 tenths from 14 tenths. The answer is what remains, 2 wholes and 6 tenths, or 2.6.
-
1.4 means 1 whole and 4 tenths. I need to multiply each number by 6, which is the same as skip counting sixes. 6 × 1 = 6. 6 × 4 tenths = 24 tenths. 24 tenths is the same as 2 wholes and 4 tenths, so altogether I have 8 wholes and 4 tenths, or 8.4.
-
No, Mimi needs to do some regrouping, starting with the smallest place, the hundredths place. 28 hundredths can be regrouped as 2 tenths and 8 hundredths. So, now there are 8 wholes, 12 + 2 = 14 tenths, and 8 hundredths. Next, regroup some of the tenths. 10 tenths can be regrouped as 1 whole, so the final answer is 9 wholes, 4 tenths, and 8 hundredths, or 9.48.
-
I can round 3.8 to 4 and 5.1 to 5. Multiply: 4 × 5 = 20. 20 is close to 19.38, so the answer makes sense.
-
-
-
Vocabulary
-
Place value
DEFINE
Tells us the value of a digit based on its position in a number.
-
Decimals
DEFINE
Numbers that allow us to show parts of a whole.
-
Ones place
DEFINE
Shows the number of wholes.
-
Tenths place
DEFINE
Shows the number of parts out of 10.
-
Hundredths place
DEFINE
To the right of the tenths place, and shows us the number of parts out of 100.
-
Models
DEFINE
Visual tools that help us to represent numbers.
-
Regroup
DEFINE
When we have 10 of one place value, we can regroup to create 1 of the place value on its left.
-
Place value
DEFINE
-
Reading Material
Download as PDF Download PDF View as Separate PageWHAT IS SOLVING PROBLEMS WITH DECIMALS?You can solve problems with decimals exactly the way you solved problems with whole numbers. Use keywords to identify if you need to add, subtract, multiply, or divide to solve.
To better understand solving problems with decimals…
WHAT IS SOLVING PROBLEMS WITH DECIMALS?. You can solve problems with decimals exactly the way you solved problems with whole numbers. Use keywords to identify if you need to add, subtract, multiply, or divide to solve. To better understand solving problems with decimals…LET’S BREAK IT DOWN!
Hiking
Adesina, April, and Marcos hiked all day. They need to add up the distances they hiked to find out how far they traveled in all. The first trail was 1.7 kilometers long. The second trail was 3.2 kilometers long. To find out how much they hiked altogether, add 1.7 + 3.2. To do this, use models that represent whole and decimal numbers. We can represent 3.2 as 3 wholes and 2 tenths. We can represent 1.7 as 1 whole and 7 tenths. To add, group the wholes and group the tenths. 3 wholes plus 1 whole is 4 whole kilometers. 7 tenths plus 2 tenths is 9 tenths of a kilometer. Then we have 4 wholes and 9 tenths, or 4.9 kilometers. This means that they hiked 4.9 kilometers altogether. To check the answer, round the starting numbers to the nearest whole. 3.2 can be rounded to 3 and 1.7 can be rounded to 2. Add 3 and 2 to get 5. 5 is close to 4.9, so the answer is reasonable. Numbers with hundredths can be added the same way. If Marcos bought an energy bar for $2.34 and April bought trail mix for $1.89, how much money did they spend in all? 2.34 can be represented as 2 wholes, 3 tenths, and 4 hundredths. 1.89 can be represented as 1 whole, 8 tenths, and 9 hundredths. Adding them together, we have 3 wholes, 11 tenths, and 13 hundredths. Because we have more than 9 hundredths and tenths, we have to regroup some numbers. 10 hundredths can be regrouped to make 1 tenth, so 13 hundredths is 1 tenth and 3 hundredths. Then we have 12 tenths in total. 10 tenths can be regrouped to become 1 whole, so 12 tenths is 1 whole and 2 tenths. Altogether there are 4 wholes, 2 tenths, and 3 hundredths, or $4.23. Now you try: Add 4.58 + 2.39.
Hiking Adesina, April, and Marcos hiked all day. They need to add up the distances they hiked to find out how far they traveled in all. The first trail was 1.7 kilometers long. The second trail was 3.2 kilometers long. To find out how much they hiked altogether, add 1.7 + 3.2. To do this, use models that represent whole and decimal numbers. We can represent 3.2 as 3 wholes and 2 tenths. We can represent 1.7 as 1 whole and 7 tenths. To add, group the wholes and group the tenths. 3 wholes plus 1 whole is 4 whole kilometers. 7 tenths plus 2 tenths is 9 tenths of a kilometer. Then we have 4 wholes and 9 tenths, or 4.9 kilometers. This means that they hiked 4.9 kilometers altogether. To check the answer, round the starting numbers to the nearest whole. 3.2 can be rounded to 3 and 1.7 can be rounded to 2. Add 3 and 2 to get 5. 5 is close to 4.9, so the answer is reasonable. Numbers with hundredths can be added the same way. If Marcos bought an energy bar for $2.34 and April bought trail mix for $1.89, how much money did they spend in all? 2.34 can be represented as 2 wholes, 3 tenths, and 4 hundredths. 1.89 can be represented as 1 whole, 8 tenths, and 9 hundredths. Adding them together, we have 3 wholes, 11 tenths, and 13 hundredths. Because we have more than 9 hundredths and tenths, we have to regroup some numbers. 10 hundredths can be regrouped to make 1 tenth, so 13 hundredths is 1 tenth and 3 hundredths. Then we have 12 tenths in total. 10 tenths can be regrouped to become 1 whole, so 12 tenths is 1 whole and 2 tenths. Altogether there are 4 wholes, 2 tenths, and 3 hundredths, or $4.23. Now you try: Add 4.58 + 2.39.Science Project
Marcos, April, and Adesina grew crystals for a science project. Marcos’s crystal weighs 5.6 grams, and April’s weighs 3.5 grams. How much more does Marcos’ crystal weigh than April's? We can use decimal square models to find the answer. To find the difference, we always start with the bigger number, and we can represent 5.6 using 5 wholes and 6 tenths. To subtract, we need to take away 3.5, or 3 wholes and 5 tenths. 5 – 3 = 2 wholes. 6 tenths – 5 tenths = 1 tenth. We have 2 wholes and 1 tenth, or 2.1, remaining. Marcos’ crystal weighs 2.1 more grams than April’s. Estimate the difference to check the answer. Round 5.6 to 6 and 3.5 to 4. 6 – 4 = 2. 2 is close to 2.1, so the answer is reasonable. April’s crystal display cost $3.59. Marcos’ display cost $1.95. How much more did April’s display cost than Marcos's? Find 3.59 – 1.95 to find the difference. Use the decimal square model to show the larger number. 3.59 is 3 wholes, 5 tenths, and 9 hundredths. To subtract, cross out 1.95, or 1 whole, 9 tenths, and 5 hundredths in all. First, cross out 5 hundredths. There are 4 hundredths left. Next, we need to cross out 9 tenths, but there are only 5 tenths. Regroup 1 whole into 10 tenths. Now there are 2 wholes and 15 tenths. Subtract the 9 tenths. 15 – 9 = 6, so there are 6 tenths left. Lastly, subtract 1 whole from 2. We have 1 whole, 6 tenths, and 4 hundredths left. That means that April's display cost $1.64 more than Marcos's. Now you try: What is $6.72 – $3.45?
Science Project Marcos, April, and Adesina grew crystals for a science project. Marcos’s crystal weighs 5.6 grams, and April’s weighs 3.5 grams. How much more does Marcos’ crystal weigh than April's? We can use decimal square models to find the answer. To find the difference, we always start with the bigger number, and we can represent 5.6 using 5 wholes and 6 tenths. To subtract, we need to take away 3.5, or 3 wholes and 5 tenths. 5 – 3 = 2 wholes. 6 tenths – 5 tenths = 1 tenth. We have 2 wholes and 1 tenth, or 2.1, remaining. Marcos’ crystal weighs 2.1 more grams than April’s. Estimate the difference to check the answer. Round 5.6 to 6 and 3.5 to 4. 6 – 4 = 2. 2 is close to 2.1, so the answer is reasonable. April’s crystal display cost $3.59. Marcos’ display cost $1.95. How much more did April’s display cost than Marcos's? Find 3.59 – 1.95 to find the difference. Use the decimal square model to show the larger number. 3.59 is 3 wholes, 5 tenths, and 9 hundredths. To subtract, cross out 1.95, or 1 whole, 9 tenths, and 5 hundredths in all. First, cross out 5 hundredths. There are 4 hundredths left. Next, we need to cross out 9 tenths, but there are only 5 tenths. Regroup 1 whole into 10 tenths. Now there are 2 wholes and 15 tenths. Subtract the 9 tenths. 15 – 9 = 6, so there are 6 tenths left. Lastly, subtract 1 whole from 2. We have 1 whole, 6 tenths, and 4 hundredths left. That means that April's display cost $1.64 more than Marcos's. Now you try: What is $6.72 – $3.45?Stacking Shelves
Adesina stacks 4 drawers on top of each other. Each drawer is 0.3 meter tall. How tall is the stack? Find out by multiplying 4 by 0.3. Since multiplication is just repeated addition, 4 times 0.3 is the same as 0.3 + 0.3 + 0.3 + 0.3. Use decimal squares to model the addition. 0.3 means 3 parts out of 10. Show that 4 times. Next, count up all the tenths: there are 3, 6, 9, 12 tenths. To write this as a decimal, regroup 10 tenths to make 1 whole. That gives 1 whole and 2 tenths, or 1.2 meters. What if you stack 3 bigger shelves that are each 2.53 feet tall? To find the height of this stack, multiply 2.53 by 3. 2.53 can be modeled as 2 wholes, 5 tenths, and 3 hundredths. To multiply by 3, add each number of units 3 times. This gives 6 wholes, 15 tenths, and 9 hundredths in all. Regroup 15 tenths as 1 whole and 5 tenths. The answer is 7 wholes, 5 tenths, and 9 hundredths, or 7.59 meters tall. To use estimation to check the answer, round 2.53 to 3. 3 × 3 = 9, which is close to the answer. To multiply a decimal by a decimal, such as 0.7 times 0.3, use a model to show 0.3 as 3 parts out of 10. To show 7 tenths of 3 tenths, split each tenth into 10 equal parts, and then color only 7 of the parts in each tenth. When tenths are split into 10 parts each, there are 100 pieces in the whole. That means that each of those small squares represents one hundredth. Each model shows 7 hundredths. There are 3 models to show the original 3 tenths. So the answer is 21 hundredths, or 0.21. Now you try: Multiply 4 by 2.61 meters.
Stacking Shelves Adesina stacks 4 drawers on top of each other. Each drawer is 0.3 meter tall. How tall is the stack? Find out by multiplying 4 by 0.3. Since multiplication is just repeated addition, 4 times 0.3 is the same as 0.3 + 0.3 + 0.3 + 0.3. Use decimal squares to model the addition. 0.3 means 3 parts out of 10. Show that 4 times. Next, count up all the tenths: there are 3, 6, 9, 12 tenths. To write this as a decimal, regroup 10 tenths to make 1 whole. That gives 1 whole and 2 tenths, or 1.2 meters. What if you stack 3 bigger shelves that are each 2.53 feet tall? To find the height of this stack, multiply 2.53 by 3. 2.53 can be modeled as 2 wholes, 5 tenths, and 3 hundredths. To multiply by 3, add each number of units 3 times. This gives 6 wholes, 15 tenths, and 9 hundredths in all. Regroup 15 tenths as 1 whole and 5 tenths. The answer is 7 wholes, 5 tenths, and 9 hundredths, or 7.59 meters tall. To use estimation to check the answer, round 2.53 to 3. 3 × 3 = 9, which is close to the answer. To multiply a decimal by a decimal, such as 0.7 times 0.3, use a model to show 0.3 as 3 parts out of 10. To show 7 tenths of 3 tenths, split each tenth into 10 equal parts, and then color only 7 of the parts in each tenth. When tenths are split into 10 parts each, there are 100 pieces in the whole. That means that each of those small squares represents one hundredth. Each model shows 7 hundredths. There are 3 models to show the original 3 tenths. So the answer is 21 hundredths, or 0.21. Now you try: Multiply 4 by 2.61 meters.Pets
Adesina has a puppy and April and Marcos each have a rabbit. Adesina feeds her dog 3 times a day. She fed her dog 0.6 kg of food in one day. How much did she feed her dog for each meal? To find the answer, divide 0.6 by 3. Model 0.6 by showing 6 tenths, or 6 out of 10 parts of a whole. If 6 tenths is split into 3 equal groups, each group has 2 tenths in it. Then the answer is 0.2 kg. Marcos has 0.48 kg of rabbit food and needs to feed his rabbit 4 equal meals. To split 0.48 into 4 equal parts, show 0.48 as 4 tenths and 8 hundredths. If they are divided into 4 equal groups, each group contains 1 tenth and 2 hundredths, or 0.12 kg. Now you try: What is 0.72 kg divided by 6?
Pets Adesina has a puppy and April and Marcos each have a rabbit. Adesina feeds her dog 3 times a day. She fed her dog 0.6 kg of food in one day. How much did she feed her dog for each meal? To find the answer, divide 0.6 by 3. Model 0.6 by showing 6 tenths, or 6 out of 10 parts of a whole. If 6 tenths is split into 3 equal groups, each group has 2 tenths in it. Then the answer is 0.2 kg. Marcos has 0.48 kg of rabbit food and needs to feed his rabbit 4 equal meals. To split 0.48 into 4 equal parts, show 0.48 as 4 tenths and 8 hundredths. If they are divided into 4 equal groups, each group contains 1 tenth and 2 hundredths, or 0.12 kg. Now you try: What is 0.72 kg divided by 6? -
Practice Word Problems
-
Practice Number Problems
-
Teacher Resources
These downloadable teacher resources can help you create a full lesson around the video. These PDFs incorporate using class discussion questions, vocabulary lists, printable math worksheets, quizzes, games, and more.
Select a Google Form
Choose a way to play this quiz game
-
Questions appear on the teacher's screen. Students answer on their own devices.
Start a Free Trial Today. Get a $5 Amazon Gift Card!
Teachers! Start a free trial & we'll send your gift card within 1 day. Only cards left. Try it now.
This email is associated with a Science Kit subscription. Kit subscriptions are managed on this separate page: Manage Subscription
-
Science & Math$/yr
-
Science Only$/yr
access all lessons
• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida• No credit card required •
Already a member? Sign In
* no credit card required *
* no credit card required *
* no credit card required *
no credit card required
Skip, I will use a 3 day free trial
Enjoy your free 30 days trial
-
Unlimited access to our full library
of videos & lessons for grades K-5. -
You won’t be billed unless you keep your
account open past your 14-day free trial. -
You can cancel anytime in 1 click on the
manage account page or by emailing us.
-
Unlimited access to our full library of videos & lessons for grades K-5.
-
You won't be billed unless you keep your account open past 14 days.
-
You can cancel anytime in 1-click on the manage account page.
Cancel anytime in 1-click on the manage account page before the trial ends and you won't be charged.
Otherwise you will pay just $10 CAD/month for the service as long as your account is open.
Cancel anytime on the manage account page in 1-click and you won't be charged.
Otherwise you will pay $10 CAD/month for the service as long as your account is open.
We just sent you a confirmation email. Enjoy!
DonePlease login or join.