Enjoy any 5 free lessons!
You can pick. No account needed.
Watch Video
Become a member to get full access to our entire library of learning videos, reading material, quiz games, simple DIY activities & more.
Become a member to get full access to our entire library of learning videos, quiz games, & more.
Plans & Pricing
to watch this full video.

Access All Videos
and Lessons, No Limits.
Access All Videos

No credit card required,
takes 7 sec to signup.
No card required

Ready-to-go lessons
that save you time.
Ready-to-go lessons
If you are on a school computer or network, ask your tech person to whitelist these URLs:
*.wistia.com, fast.wistia.com, fast.wistia.net, embedwistia-a.akamaihd.net
Sometimes a simple refresh solves this issue. If you need further help, contact us.
Causes of Seasons

- Show lesson plan & teacher guide
- Show answers to discussion questions
- Show video only
- Allow visiting of other pages
- Hide assessments
- Earth spins on its axis, which is tilted by 23.5 degrees.
- This tilt causes places on Earth to experience different intensities of sunlight at different times of year.
- That leads to changes in temperature, which results in seasons.
-
Discussion Questions
-
Before VideoWhat are some examples and characteristics of seasons?ANSWER
-
In the fall, some trees lose their leaves and the temperature begins to drop. In the
winter, we have the coldest temperatures, winter storms, and less hours of daylight. In
the spring, temperature begins to rise, causing snow to melt. Often there is rainfall, and
plants begin to grow and sprout. In the summer, we have the warmest temperatures,
sometimes heat waves, and the most hours of daylight.
Hemisphere”? ANSWER-
The equator is an imaginary line that divides Earth into two halves called the
Northern Hemisphere and the Southern Hemisphere. The Northern Hemisphere lies
above or to the north of the equator, whereas the Southern Hemisphere lies to the south
or below the equator
-
Earth’s axis is an imaginary line around which Earth rotates. The points where the
axis intersects with the surface of Earth are the North Pole and the South Pole. Earth’s
axis is tilted 23.5° to its plane of orbit.
-
Earth’s orbit is an almost circular, repeating path around the Sun. Earth is held in its
orbit by gravity. The force of gravity is balanced between Earth and the Sun to keep
Earth on its cycle of orbiting the Sun once every 365 days.
a picture to show your thinking.ANSWER-
Drawings should include the Sun and Earth and show Earth tilted on its axis toward
the Sun (if representing summer in the Northern Hemisphere) or away (if representing
winter).
to show your thinking. ANSWER-
Drawings should include the Sun and Earth and show Earth tilted on its axis toward
the Sun (if representing winter in the Southern Hemisphere) or away (if representing
summer).
-
-
After VideoWhat is latitude and what are some important lines of latitude on Earth? ANSWER
-
Latitude are the imaginary lines that measure the distance north or south of the equator. The equator divides Earth equally into two hemispheres and is found at 0° latitude. The Arctic Circle is found at 66.5°N, and the Antarctic Circle is found at 66.5°S. The Tropic of Cancer is found at 23.5°N and the Tropic of Capricorn is found at 23.5°S.
-
The further you travel north or south of the equator, the more extreme the differences are between the seasons, including temperatures and hours of daylight. At the equator, there are very few differences between the seasons, with warmer temperatures all year long and hours of daylight always being 12 hours a day. The regions north of the equator experience winter in December and summer in June, whereas the opposite is true for regions south of the equator.
-
In the summer, light intensity is higher than in the winter.
-
When the angle of light that hits the surface of Earth is closer to 90°, the area is experiencing summer and warmer temperatures. In the winter, the angle at which light hits the surface of Earth is much smaller than 90°, causing colder temperatures in that area.
-
When the Northern and Southern Hemispheres are pointing toward the Sun, that region experiences more daylight hours. When the Northern and Southern Hemispheres are pointing away from the Sun, that region experiences fewer daylight hours.
-
Because every location has a unique latitude, the number of hours of daylight varies between the two regions. The larger the degree of latitude, the longer the hours of daylight.
-
-
-
Vocabulary
-
Temperature
DEFINE
A measure of how cold or hot something is.
-
Weather
DEFINE
The state of the atmosphere at a given time and place.
-
Season
DEFINE
Four divisions of the year (spring, summer, fall, and winter) marked by weather patterns and daylight hours.
-
Earth’s orbit
DEFINE
An almost circular, repeating path around the Sun.
-
Earth’s axis
DEFINE
An imaginary line around which Earth rotates.
-
Equator
DEFINE
The imaginary line of latitude that divides Earth into two equal hemispheres.
-
Latitude
DEFINE
Imaginary lines that run east and west to measure the distance north or south of the equator.
-
Light intensity
DEFINE
A measure of the intensity of light hitting Earth’s surface.
-
Temperature
DEFINE
-
Reading Material
Download as PDF Download PDF View as Separate PageWHAT ARE THE CAUSES OF SEASONS?The four divisions of the year (spring, summer, fall and winter) are marked by weather patterns and hours of daylight in a particular region. These patterns are a result of Earth’s 23.5° tilt of axis and its changing position as it orbits the Sun.
To better understand the causes of seasons…
WHAT ARE THE CAUSES OF SEASONS?. The four divisions of the year (spring, summer, fall and winter) are marked by weather patterns and hours of daylight in a particular region. These patterns are a result of Earth’s 23.5° tilt of axis and its changing position as it orbits the Sun. To better understand the causes of seasons…LET’S BREAK IT DOWN!
Earth’s Tilt of Axis
Earth spins around its axis once every 24 hours. The axis is an imaginary line on which Earth rotates. This imaginary line intersects the surface of Earth at the North Pole and South Pole. As Earth orbits around the Sun, it spins on its axis, which is tilted 23.5° relative to the plane of its orbit. Earth’s tilt of the axis points in the same direction in space but changes its position relative to the Sun depending on where it is located during its path of orbit.
During the month of June, the Northern Hemisphere and North Pole point toward the Sun. This causes temperature increases and changes in the atmosphere in the Northern Hemisphere that indicate the season of summer. During the month of December, the Southern hemisphere and South Pole point toward the Sun. This causes temperature increases and changes in the atmosphere in the Southern Hemisphere that indicate the season of summer.
Earth’s Tilt of Axis Earth spins around its axis once every 24 hours. The axis is an imaginary line on which Earth rotates. This imaginary line intersects the surface of Earth at the North Pole and South Pole. As Earth orbits around the Sun, it spins on its axis, which is tilted 23.5° relative to the plane of its orbit. Earth’s tilt of the axis points in the same direction in space but changes its position relative to the Sun depending on where it is located during its path of orbit. During the month of June, the Northern Hemisphere and North Pole point toward the Sun. This causes temperature increases and changes in the atmosphere in the Northern Hemisphere that indicate the season of summer. During the month of December, the Southern hemisphere and South Pole point toward the Sun. This causes temperature increases and changes in the atmosphere in the Southern Hemisphere that indicate the season of summer.Light Intensity
Light is a form of energy that can travel through space. Light energy can be seen by the human eye and is given off by things such as stars, light bulbs, lasers, and hot objects. Light energy is also used by plants to produce food through the process of photosynthesis. When there is more light energy, plants are able to produce more food, which helps them grow.
Light can be measured to determine its intensity or how much energy is hitting a surface. Light travels in a straight line until it hits something else that may block or reflect the light in a different direction. When light travels in a straight line from the Sun to Earth and hits the surface at a 90° angle, it is the most intense and transfers the most energy. This energy is known as solar radiation. When light hits the surface of Earth at a smaller angle, less energy and solar radiation is transferred because the light is spread out over a larger area of Earth’s surface.
Light Intensity Light is a form of energy that can travel through space. Light energy can be seen by the human eye and is given off by things such as stars, light bulbs, lasers, and hot objects. Light energy is also used by plants to produce food through the process of photosynthesis. When there is more light energy, plants are able to produce more food, which helps them grow. Light can be measured to determine its intensity or how much energy is hitting a surface. Light travels in a straight line until it hits something else that may block or reflect the light in a different direction. When light travels in a straight line from the Sun to Earth and hits the surface at a 90° angle, it is the most intense and transfers the most energy. This energy is known as solar radiation. When light hits the surface of Earth at a smaller angle, less energy and solar radiation is transferred because the light is spread out over a larger area of Earth’s surface.Latitude
Latitude are imaginary lines that run east and west to measure the distance north or south of the equator. The equator is a line of latitude that divides Earth into two equal hemispheres and is located at 0°. The angle between the North Pole and the equator is 90° and forms a right angle, thus creating the latitude of 90°N (north). The same is true for the South Pole, which creates a latitude of 90°S (south). The latitude of any particular location on earth is measured by the degrees of the angle between that location and the equator. The farther away from the equator, the greater the latitude will be.
There are four lines of latitude other than the equator. These lines have special names and are marked on most globes to create regions with similar conditions during the seasons. The Arctic Circle and Antarctic Circle are the most north and south of these latitudes, with the Arctic Circle found at 66.5°N and the Antarctic Circle found at 66.5°S. The areas between these circles and the North and South Poles are where you can find the coldest temperatures and most extreme differences between the seasons. The Tropic of Cancer can be found at 23.5°N between the equator and the Arctic Circle, and the Tropic of Capricorn can be found at 23.5°S between the equator and the Antarctic Circle.
Latitude Latitude are imaginary lines that run east and west to measure the distance north or south of the equator. The equator is a line of latitude that divides Earth into two equal hemispheres and is located at 0°. The angle between the North Pole and the equator is 90° and forms a right angle, thus creating the latitude of 90°N (north). The same is true for the South Pole, which creates a latitude of 90°S (south). The latitude of any particular location on earth is measured by the degrees of the angle between that location and the equator. The farther away from the equator, the greater the latitude will be. There are four lines of latitude other than the equator. These lines have special names and are marked on most globes to create regions with similar conditions during the seasons. The Arctic Circle and Antarctic Circle are the most north and south of these latitudes, with the Arctic Circle found at 66.5°N and the Antarctic Circle found at 66.5°S. The areas between these circles and the North and South Poles are where you can find the coldest temperatures and most extreme differences between the seasons. The Tropic of Cancer can be found at 23.5°N between the equator and the Arctic Circle, and the Tropic of Capricorn can be found at 23.5°S between the equator and the Antarctic Circle.Daylight Hours
The number of hours of daylight changes for a location depending on the season and the latitude. At the equator, the number of hours of daylight remains close to 12 hours in all seasons of the year. However, for locations above and below the equator, the summer has the most hours of daylight and the winter has the least hours of daylight. The more north or south you travel, the larger the difference in daylight hours between the summer and winter. The North Pole is an example of the extreme difference in daylight hours between the summer and winter. At the peak of summer, there are 24 hours of daylight; at the peak of winter, there are 0 hours of daylight.
Daylight Hours The number of hours of daylight changes for a location depending on the season and the latitude. At the equator, the number of hours of daylight remains close to 12 hours in all seasons of the year. However, for locations above and below the equator, the summer has the most hours of daylight and the winter has the least hours of daylight. The more north or south you travel, the larger the difference in daylight hours between the summer and winter. The North Pole is an example of the extreme difference in daylight hours between the summer and winter. At the peak of summer, there are 24 hours of daylight; at the peak of winter, there are 0 hours of daylight.Planetary Astronomer
Many types of scientists study space, and they are called astronomers. They study the Sun, Moon, stars, planets, and other celestial bodies in the universe. A planetary astronomer studies planets, including how seasons might occur on other planets. Planetary astronomers have found that Mercury, the planet closest to our Sun, has no tilt as it spins on its axis. The lack of a tilt of axis causes no seasons on Mercury. However, because Mercury does not orbit the Sun in a perfect circle, there are times when Mercury is closer to the Sun (causing Mercury to become warmer) and farther away from the Sun (causing Mercury to become colder). Planetary astronomers have found that Earth travels in close to a perfect circle as it orbits the Sun, so the seasonal temperature variations are not caused by Earth’s orbit but by the tilt of Earth’s axis.
Planetary astronomers have also found seasons on other planets in our solar system. Venus, the second planet from the Sun, has a tilted axis of only 3°. Because the tilt is so small, Venus barely experiences any temperature changes as it orbits the Sun. Mars, the fourth planet from the Sun, has a tilt of axis of 25°. This tilt causes all four seasons on Mars, but the seasons are much longer than those on Earth because Mars takes twice as long to orbit the Sun.
Planetary Astronomer Many types of scientists study space, and they are called astronomers. They study the Sun, Moon, stars, planets, and other celestial bodies in the universe. A planetary astronomer studies planets, including how seasons might occur on other planets. Planetary astronomers have found that Mercury, the planet closest to our Sun, has no tilt as it spins on its axis. The lack of a tilt of axis causes no seasons on Mercury. However, because Mercury does not orbit the Sun in a perfect circle, there are times when Mercury is closer to the Sun (causing Mercury to become warmer) and farther away from the Sun (causing Mercury to become colder). Planetary astronomers have found that Earth travels in close to a perfect circle as it orbits the Sun, so the seasonal temperature variations are not caused by Earth’s orbit but by the tilt of Earth’s axis. Planetary astronomers have also found seasons on other planets in our solar system. Venus, the second planet from the Sun, has a tilted axis of only 3°. Because the tilt is so small, Venus barely experiences any temperature changes as it orbits the Sun. Mars, the fourth planet from the Sun, has a tilt of axis of 25°. This tilt causes all four seasons on Mars, but the seasons are much longer than those on Earth because Mars takes twice as long to orbit the Sun. -
DIY Activity Guide
-
Teacher Resources
These downloadable teacher resources can help you create a full lesson around the video. These PDFs incorporate using class discussion questions, vocabulary lists, printable worksheets, quizzes, games, and more.
Select a Google Form
Choose a way to play this quiz game
-
Questions appear on the teacher's screen. Students answer on their own devices.
-
A self-paced game with questions and answers shown on the student's device.



Start a Free Trial Today. Get a $5 Amazon Gift Card!
Teachers! Start a free trial & we'll send your gift card within 1 day. Only cards left. Try it now.
This email is associated with a Science Kit subscription. Kit subscriptions are managed on this separate page: Manage Subscription



-
Science & Math$/yr
-
Science Only$/yr
What is the tilt of the Earth in degrees?
Describe the tilt of the Earth compared to the Sun, during summer vs. winter in New York City.
Explain why are the seasons in Australia opposite from the seasons in the United States.

access all lessons
• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida
• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida
• No credit card required •
Already a member? Sign In
* no credit card required *

* no credit card required *
* no credit card required *


no credit card required
Skip, I will use a 3 day free trial
Enjoy your free 30 days trial
-
Unlimited access to our full library
of videos & lessons for grades K-5. -
You won’t be billed unless you keep your
account open past your 14-day free trial. -
You can cancel anytime in 1 click on the
manage account page or by emailing us.
-
Unlimited access to our full library of videos & lessons for grades K-5.
-
You won't be billed unless you keep your account open past 14 days.
-
You can cancel anytime in 1-click on the manage account page.
Cancel anytime in 1-click on the manage account page before the trial ends and you won't be charged.
Otherwise you will pay just $10 CAD/month for the service as long as your account is open.
Cancel anytime on the manage account page in 1-click and you won't be charged.
Otherwise you will pay $10 CAD/month for the service as long as your account is open.
We just sent you a confirmation email. Enjoy!
DonePlease login or join.