Enjoy any 5 free lessons!
You can pick. No account needed.
Watch VideoBecome a member to get full access to our entire library of learning videos, reading material, quiz games, simple DIY activities & more.
Become a member to get full access to our entire library of learning videos, quiz games, & more.
Plans & Pricingto watch this full video.
Access All Videos
and Lessons, No Limits.
Access All Videos
No credit card required,
takes 7 sec to signup.
No card required
Ready-to-go lessons
that save you time.
Ready-to-go lessons
If you are on a school computer or network, ask your tech person to whitelist these URLs:
*.wistia.com, fast.wistia.com, fast.wistia.net, embedwistia-a.akamaihd.net
Sometimes a simple refresh solves this issue. If you need further help, contact us.
Multiplication Using The Standard Algorithm
- Show lesson plan & teacher guide
- Show answers to discussion questions
- Show video only
- Allow visiting of other pages
- Hide assessments
- How to multiply using the standard algorithm.
- When you multiply numbers with 2 or more digits, you get partial products, that are added together to find the answer.
- This knowledge can help us quickly count large numbers of things like jelly balls, fan mail and even coins in a video game!
-
Discussion Questions
-
Before VideoWhat does product mean?
ANSWER-
The final result when you multiply.
-
4 thousands, 7 hundreds, 8 tens, and 2 ones.
ANSWER-
90 × 30 = 2,700.
-
I can draw a model with four sections. On the top, I put 80 and 7. On the left, I put 30 and 1. The four sections represent the four partial products.
80 × 30 = 2,400, 7 × 30 = 210, 80 × 1 = 80, 7 × 1 = 7. 2,400 + 210 + 80 + 7 = 2,697.
ANSWER-
Yes, my estimate was very close. It is important because it lets us know approximately what number to expect, and if we make a mistake in our calculations, we know that we need to go back and fix it.
-
-
After VideoWhich is better, the area model or the multiplication algorithm?ANSWER
-
Both help us in different ways. The area model helps us to understand what we are multiplying and to visualize the result. The algorithm is faster and can help us multiply large numbers more quickly, but we should only use it if we understand what it represents.
ANSWER-
Sometimes when we use the multiplication algorithm, we end up with two or more partial products. These are part of the answer, and need to be added together to get the final product.
ANSWER-
Multiplying 7 × 2 is 7 × 2 ones, multiplying 7 × 5 is 7 × 5 tens, multiplying 7 × 3 is 7 × 3 hundreds.
ANSWER-
The 5 goes under the ones place and the 6 is written above the tens place, to be added to the product after multiplying by 8 × 1.
-
He forgot to write a 0 on the ones place of the second partial product. We need to put 0 in the ones place because there are 0 ones in the partial product. He also forgot to add the partial products together to get the final product.
-
-
-
Vocabulary
-
Product
DEFINE
The final answer in a multiplication problem.
-
Partial product
DEFINE
Part of the product that is added to another part to form the product.
-
Area model
DEFINE
A multiplication method that uses rectangles and breaks numbers up by place value.
-
Algorithm
DEFINE
A set of rules and steps that you follow to perform a calculation.
-
Place value
DEFINE
The value of each digit in a number.
-
Digit
DEFINE
Any numeral between 0 and 9 that forms part of a number.
-
Product
DEFINE
-
Reading Material
Download as PDF Download PDF View as Separate PageWHAT IS MULTIPLICATION USING THE STANDARD ALGORITHM?Warm up by recalling how to multiply using the area model method. You will then learn the multiplication algorithm, first with 3 digits × 1 digit, 4 digits × 1 digit, then 2 × 2 and 3 × 2.
To better understand multiplication using the standard algorithm…
WHAT IS MULTIPLICATION USING THE STANDARD ALGORITHM?. Warm up by recalling how to multiply using the area model method. You will then learn the multiplication algorithm, first with 3 digits × 1 digit, 4 digits × 1 digit, then 2 × 2 and 3 × 2. To better understand multiplication using the standard algorithm…LET’S BREAK IT DOWN!
Jelly Balls
If each packet contains 132 jelly balls and we have 3 packets, how many jelly balls are there together? First, we line up the numbers by place value, with the smaller number on the bottom. So, we write 3 under the 2 in 132. Then we draw a line under the bottom number and a multiplication symbol on the left. We start by multiplying 3 by the digit in the ones place: 3 × 2 is 6. We write the 6 in the ones place under the line. Next, we multiply the 3 by the digit in the tens place: 3 × 3 = 9, so we write a 9 in the tens place under the line. Remember that this means 3 × 3 tens, so 9 means 9 tens. Finally, we multiply 3 by the digit in the hundreds place: 3 × 1 = 3, so we write a 3 in the hundreds place under the line. The product is 396 jelly balls! Now you try: Use the standard algorithm to multiply: 413 × 2 = ?
Jelly Balls If each packet contains 132 jelly balls and we have 3 packets, how many jelly balls are there together? First, we line up the numbers by place value, with the smaller number on the bottom. So, we write 3 under the 2 in 132. Then we draw a line under the bottom number and a multiplication symbol on the left. We start by multiplying 3 by the digit in the ones place: 3 × 2 is 6. We write the 6 in the ones place under the line. Next, we multiply the 3 by the digit in the tens place: 3 × 3 = 9, so we write a 9 in the tens place under the line. Remember that this means 3 × 3 tens, so 9 means 9 tens. Finally, we multiply 3 by the digit in the hundreds place: 3 × 1 = 3, so we write a 3 in the hundreds place under the line. The product is 396 jelly balls! Now you try: Use the standard algorithm to multiply: 413 × 2 = ?Fan mail
Adesina shows April and Marcos how to use the standard algorithm to calculate how much mail is delivered in 3 days, if each day 2,865 pieces of mail are delivered. First, we line up the numbers by place value with 3 on the bottom, and then we multiply each digit, starting with the ones place and working our way to the left. 3 × 5 = 15. We write 5 below the line in the ones place and we place the 1 above the 6 in the tens place to represent the 1 ten in 15. That means that after we multiply by the digit in the tens place, we need to add a 1 ten to the total number of tens. 3 × 6 tens + 1 ten is 19 tens, so we write 9 below the line in the tens place, and we regroup 10 tens as 1 hundred by writing it above the 8 in the hundreds place. Now when we multiply 3 by 8, meaning 3 × 8 hundreds, we add 1, meaning 1 hundred, to the answer. 3 × 8 hundreds + 1 hundred is 25 hundreds, so we write 5 in the hundreds place below the line, and we regroup 20 hundreds as 2 thousands by writing it above the thousands place. Finally, we multiply 3 by 2 thousands and we add the regrouped 2 thousands to get 8 thousands. We can write 8 under the line in the thousands place. The final answer is 8,595. Now you try: 3,719 × 4 = ?
Fan mail Adesina shows April and Marcos how to use the standard algorithm to calculate how much mail is delivered in 3 days, if each day 2,865 pieces of mail are delivered. First, we line up the numbers by place value with 3 on the bottom, and then we multiply each digit, starting with the ones place and working our way to the left. 3 × 5 = 15. We write 5 below the line in the ones place and we place the 1 above the 6 in the tens place to represent the 1 ten in 15. That means that after we multiply by the digit in the tens place, we need to add a 1 ten to the total number of tens. 3 × 6 tens + 1 ten is 19 tens, so we write 9 below the line in the tens place, and we regroup 10 tens as 1 hundred by writing it above the 8 in the hundreds place. Now when we multiply 3 by 8, meaning 3 × 8 hundreds, we add 1, meaning 1 hundred, to the answer. 3 × 8 hundreds + 1 hundred is 25 hundreds, so we write 5 in the hundreds place below the line, and we regroup 20 hundreds as 2 thousands by writing it above the thousands place. Finally, we multiply 3 by 2 thousands and we add the regrouped 2 thousands to get 8 thousands. We can write 8 under the line in the thousands place. The final answer is 8,595. Now you try: 3,719 × 4 = ?Eggs
Adesina, April, and Marcos use the algorithm to find out how many eggs there are in 24 cartons that contain 12 eggs each. To start, we line up the numbers by place value, with the bigger number on top. First, we need to multiply the ones place of the bottom number by each digit in the top number, and then we must do the same thing with the tens place. First, multiply 2 by 4, which is 8. We write 8 underneath the line in the ones place. Next, we multiply 2 by the 2 in the tens place. 2 × 2 = 4, so we write 4 in the tens place under the line. Our first partial product is 48. Now we multiply 24 by the tens place, 1. Since we are multiplying by tens, we place a 0 in the ones place. Multiply 1 ten by 4 to get 4 tens. We write 4 in the tens place. Then we multiply 1 ten by 2 tens to get 2 hundreds, so we place 2 in the hundreds place. Our second partial product is 240. Notice that all the same place values are lined up in our partial products. Add the partial products together to get the total product. 48 + 240 = 288. There are 288 eggs. Now you try: 31 × 23 = ?
Eggs Adesina, April, and Marcos use the algorithm to find out how many eggs there are in 24 cartons that contain 12 eggs each. To start, we line up the numbers by place value, with the bigger number on top. First, we need to multiply the ones place of the bottom number by each digit in the top number, and then we must do the same thing with the tens place. First, multiply 2 by 4, which is 8. We write 8 underneath the line in the ones place. Next, we multiply 2 by the 2 in the tens place. 2 × 2 = 4, so we write 4 in the tens place under the line. Our first partial product is 48. Now we multiply 24 by the tens place, 1. Since we are multiplying by tens, we place a 0 in the ones place. Multiply 1 ten by 4 to get 4 tens. We write 4 in the tens place. Then we multiply 1 ten by 2 tens to get 2 hundreds, so we place 2 in the hundreds place. Our second partial product is 240. Notice that all the same place values are lined up in our partial products. Add the partial products together to get the total product. 48 + 240 = 288. There are 288 eggs. Now you try: 31 × 23 = ?Collecting coins
Collecting coins April and Marcos collected 145 coins in each of 37 levels of a video game. They want to use the algorithm to calculate how many coins they have altogether. As usual, 145 is placed above 37, aligned by place value. Starting with the ones place, we multiply 7 × 5 = 35. Write the 5 in the ones place, and regroup the 3 above the tens place. Next, we multiply 7 × 4 = 28, plus the 3 we regrouped, to make 31. We write 1 in the tens place and regroup 3 above the hundreds place. Then we find 7 × 1 = 7, and we add the 3 we regrouped to get 10. The 0 goes in the hundreds place and the 1 goes in the thousands place. Our first partial product is 1,015. Now, we need to multiply 145 by the digit in the tens place. Since we have no ones in our second product, we write a 0 in the ones place below our first partial product. Then, start by multiplying 3 × 5 = 15. Place the 5 in the tens place and the 1 is regrouped above the hundreds place. Next, multiply 3 × 4 = 12. Add the 1 that was regrouped to get a total of 13. The 3 goes in the hundreds place, and the 1 is regrouped to the thousands place. Finally, we find 3 × 1 = 3. Add the 1 that we regrouped for a total of 4. The 4 goes in the thousands place. The second partial product is 4,350. Add the partial products together to find the total product: 1,015 + 4,350 = 5,365 coins! Now you try: 1,589 × 43 = ? -
Practice Word Problems
-
Practice Number Problems
-
Teacher Resources
These downloadable teacher resources can help you create a full lesson around the video. These PDFs incorporate using class discussion questions, vocabulary lists, printable math worksheets, quizzes, games, and more.
Select a Google Form
Choose a way to play this quiz game
-
Questions appear on the teacher's screen. Students answer on their own devices.
Start a Free Trial Today. Get a $5 Amazon Gift Card!
Teachers! Start a free trial & we'll send your gift card within 1 day. Only cards left. Try it now.
This email is associated with a Science Kit subscription. Kit subscriptions are managed on this separate page: Manage Subscription
-
Science & Math$/yr
-
Science Only$/yr
Use the standard algorithm to multiply: 443 × 2.
Use the standard algorithm to multiply: 157 × 5.
Use the standard algorithm to multiply: 143 × 26.
access all lessons
• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida• No credit card required •
Already a member? Sign In
* no credit card required *
* no credit card required *
* no credit card required *
no credit card required
Skip, I will use a 3 day free trial
Enjoy your free 30 days trial
-
Unlimited access to our full library
of videos & lessons for grades K-5. -
You won’t be billed unless you keep your
account open past your 14-day free trial. -
You can cancel anytime in 1 click on the
manage account page or by emailing us.
-
Unlimited access to our full library of videos & lessons for grades K-5.
-
You won't be billed unless you keep your account open past 14 days.
-
You can cancel anytime in 1-click on the manage account page.
Cancel anytime in 1-click on the manage account page before the trial ends and you won't be charged.
Otherwise you will pay just $10 CAD/month for the service as long as your account is open.
Cancel anytime on the manage account page in 1-click and you won't be charged.
Otherwise you will pay $10 CAD/month for the service as long as your account is open.
We just sent you a confirmation email. Enjoy!
DonePlease login or join.