Enjoy any 5 free lessons!
You can pick. No account needed.
Watch VideoBecome a member to get full access to our entire library of learning videos, reading material, quiz games, simple DIY activities & more.
Become a member to get full access to our entire library of learning videos, quiz games, & more.
Plans & Pricingto watch this full video.
Access All Videos
and Lessons, No Limits.
Access All Videos
No credit card required,
takes 7 sec to signup.
No card required
Readytogo lessons
that save you time.
Readytogo lessons
If you are on a school computer or network, ask your tech person to whitelist these URLs:
*.wistia.com, fast.wistia.com, fast.wistia.net, embedwistiaa.akamaihd.net
Sometimes a simple refresh solves this issue. If you need further help, contact us.
Find Factor Pairs within 100
 Show lesson plan & teacher guide
 Show answers to discussion questions
 Show video only
 Allow visiting of other pages
 Hide assessments
 How to find factor pairs.
 How to determine if a number is prime or composite.
 That this knowledge can help us plan a race, run a bake sale, and even do karate!

Discussion Questions

Before VideoWhat is a factor?ANSWER

A whole number that is multiplied to get a product.

The result of multiplying two whole numbers.

1, 2, 4, 8, and 16.
ANSWER
The number 1.

1 and 11.


After VideoWhat is the difference between prime and composite numbers?ANSWER

A prime number has only two factors, 1 and itself, while a composite number has more than 2 factors.

The list reverses or starts to repeat with the factors in reverse order.

The rows and number of tiles in a row (dimensions of the rectangle) reverse order. You found the rectangles that are most squarelike.

1, 3, 13, 39.

1 and 64, 2 and 32, 4 and 16, 8 and 8.



Vocabulary

Factor
DEFINE
A whole number that is multiplied to get a product.

Factor Pairs
DEFINE
Two numbers that when multiplied result in a particular product.

Product
DEFINE
The result you get when you multiply two numbers together.

Multiples
DEFINE
The result of multiplying a whole number by different whole numbers.

Prime number
DEFINE
A number with exactly two different factors, 1 and the number itself.

Composite Number
DEFINE
A number that has more than two factors.

Factor
DEFINE

Reading Material
Download as PDF Download PDF View as Separate PageWHAT ARE FACTOR PAIRS WITHIN 100?Students learn to find all factor pairs for a whole number in the range 1100. Students will also recognize that a whole number is a multiple of each of its factors. They will determine whether a given whole number in the range 1100 is a multiple of a given onedigit number and whether a given whole number in the range 1100 is prime or composite.
To better understand factor pairs within 100…
WHAT ARE FACTOR PAIRS WITHIN 100?. Students learn to find all factor pairs for a whole number in the range 1100. Students will also recognize that a whole number is a multiple of each of its factors. They will determine whether a given whole number in the range 1100 is a multiple of a given onedigit number and whether a given whole number in the range 1100 is prime or composite. To better understand factor pairs within 100…LET’S BREAK IT DOWN!
Relay Teams
Let's say that you have twelve people and you would like to make teams to compete in a relay race. What are all the different ways you can put twelve people into equalsized groups? One way to solve this problem is to think of all the different factors of 12. Starting with 1, since 1 × 12 = 12, we know that we can make one team with twelve players. We next consider 2, and since 2 × 6 = 12, we can have two teams of 6. Since 3 × 4 = 12, we can make 3 teams with 4 people in each, and 4 teams with 3 players each, since 4 × 3 = 12. Five does not divide evenly into 12, but 6 × 2 = 12, so we can make 6 teams with 2 players each. We continue testing the next whole numbers, and find that 7, 8, 9, 10, and 11 don't divide evenly into 12. Finally, we can have 12 teams each with 1 player, since 12 × 1 = 12. These are all of the different ways to make teams from 12 people, and also all of the factor pairs of 12. Try this one yourself: How many different ways can you put 16 books into piles, where each pile has the same number of books.
Relay Teams Let's say that you have twelve people and you would like to make teams to compete in a relay race. What are all the different ways you can put twelve people into equalsized groups? One way to solve this problem is to think of all the different factors of 12. Starting with 1, since 1 × 12 = 12, we know that we can make one team with twelve players. We next consider 2, and since 2 × 6 = 12, we can have two teams of 6. Since 3 × 4 = 12, we can make 3 teams with 4 people in each, and 4 teams with 3 players each, since 4 × 3 = 12. Five does not divide evenly into 12, but 6 × 2 = 12, so we can make 6 teams with 2 players each. We continue testing the next whole numbers, and find that 7, 8, 9, 10, and 11 don't divide evenly into 12. Finally, we can have 12 teams each with 1 player, since 12 × 1 = 12. These are all of the different ways to make teams from 12 people, and also all of the factor pairs of 12. Try this one yourself: How many different ways can you put 16 books into piles, where each pile has the same number of books.Karate Mats
Let's say that you have 30 karate mats that need to be arranged into a rectangle. These rectangles can help us to find the factor pairs for the number 30. We need to find all the ways to make rectangles with the mats with the same number of mats in each row. Starting with 1, we know that we can make 1 row with 30 mats, since 1 × 30 = 30. This means that 1 and 30 are a factor pair of 30. If we make 2 rows, each row will have 15 mats, since 2 × 15 = 30. 2 and 15 are another factor pair. We can have 3 rows of 10 mats since 3 × 10 = 30, making 3 and 10 a factor pair. Four does not divide evenly into 30, but we can have 5 rows of 6 mats, since 5 × 6 = 30. We can also have a rectangle with 6 rows and 5 mats in each row, since 6 × 5 = 30. We notice that the 6 × 5 rectangle looks closest to a square, and closest to the 5 × 6 rectangle. This is when we know that we have found all the factor pairs, since the rectangle dimensions are reversing. Repeat the pattern to find the rest of the factor pairs. Try this one yourself: How many different large rectangles can be made from 12 smaller rectangles?
Karate Mats Let's say that you have 30 karate mats that need to be arranged into a rectangle. These rectangles can help us to find the factor pairs for the number 30. We need to find all the ways to make rectangles with the mats with the same number of mats in each row. Starting with 1, we know that we can make 1 row with 30 mats, since 1 × 30 = 30. This means that 1 and 30 are a factor pair of 30. If we make 2 rows, each row will have 15 mats, since 2 × 15 = 30. 2 and 15 are another factor pair. We can have 3 rows of 10 mats since 3 × 10 = 30, making 3 and 10 a factor pair. Four does not divide evenly into 30, but we can have 5 rows of 6 mats, since 5 × 6 = 30. We can also have a rectangle with 6 rows and 5 mats in each row, since 6 × 5 = 30. We notice that the 6 × 5 rectangle looks closest to a square, and closest to the 5 × 6 rectangle. This is when we know that we have found all the factor pairs, since the rectangle dimensions are reversing. Repeat the pattern to find the rest of the factor pairs. Try this one yourself: How many different large rectangles can be made from 12 smaller rectangles?Beaded Bracelets
Let's say you have 64 beads and you would like to split them up into equal groups to make bracelets. Finding the factor pairs for the number 64 will help us solve this problem. Starting with 1, we can make 1 bracelet with 64 beads (1 × 64 = 64), 2 bracelets with 32 beads each (2 × 32 = 64), 4 bracelets with 16 beads (4 × 16 = 64), and 8 bracelets with 8 beads (8 × 8 = 64). The other numbers between 1 and 8 do not divide evenly into 64. Once we see the same factor repeating in a factor pair—like we did with 8 × 8—we know that we have found all of the factor pairs. The factors begin to repeat after that, so we can stop. The factor pairs of 64 are 1 and 64, 2 and 32, 4 and 16, and 8 and 8. Try this one yourself: How many different ways can you divide 36 coins into bags with the same number of coins in each bag?
Beaded Bracelets Let's say you have 64 beads and you would like to split them up into equal groups to make bracelets. Finding the factor pairs for the number 64 will help us solve this problem. Starting with 1, we can make 1 bracelet with 64 beads (1 × 64 = 64), 2 bracelets with 32 beads each (2 × 32 = 64), 4 bracelets with 16 beads (4 × 16 = 64), and 8 bracelets with 8 beads (8 × 8 = 64). The other numbers between 1 and 8 do not divide evenly into 64. Once we see the same factor repeating in a factor pair—like we did with 8 × 8—we know that we have found all of the factor pairs. The factors begin to repeat after that, so we can stop. The factor pairs of 64 are 1 and 64, 2 and 32, 4 and 16, and 8 and 8. Try this one yourself: How many different ways can you divide 36 coins into bags with the same number of coins in each bag?Prime Cupcakes
Let's say that you want to use factor pairs to see how you can split 11 cupcakes into packs of the same number of cupcakes. We can use factor pairs to find out the different ways 11 can be divided into equal groups. Start at 1. We can have 1 pack of 11 cupcakes because 1 × 11 = 11. Try the other numbers: 2, 3, 4, 5, 6, 7, 8, 9, and 10. None of these number are factors of 11. None of them divide evenly into 11. We could have 11 packs with 1 cupcake each, since 11 × 1 = 11. That means 1 and 11 are the only factor pairs of 11. 11 is a prime number. A prime number is defined as a number whose only factors are 1 and itself. Try this one yourself: How many different teams, each with the same number of players, can you make from a class of 19 students?
Prime Cupcakes Let's say that you want to use factor pairs to see how you can split 11 cupcakes into packs of the same number of cupcakes. We can use factor pairs to find out the different ways 11 can be divided into equal groups. Start at 1. We can have 1 pack of 11 cupcakes because 1 × 11 = 11. Try the other numbers: 2, 3, 4, 5, 6, 7, 8, 9, and 10. None of these number are factors of 11. None of them divide evenly into 11. We could have 11 packs with 1 cupcake each, since 11 × 1 = 11. That means 1 and 11 are the only factor pairs of 11. 11 is a prime number. A prime number is defined as a number whose only factors are 1 and itself. Try this one yourself: How many different teams, each with the same number of players, can you make from a class of 19 students? 
Practice Word Problems

Practice Number Problems

Teacher Resources
These downloadable teacher resources can help you create a full lesson around the video. These PDFs incorporate using class discussion questions, vocabulary lists, printable math worksheets, quizzes, games, and more.
Select a Google Form
Choose a way to play this quiz game

Questions appear on the teacher's screen. Students answer on their own devices.
Start a Free Trial Today. Get a $5 Amazon Gift Card!
Teachers! Start a free trial & we'll send your gift card within 1 day. Only cards left. Try it now.
This email is associated with a Science Kit subscription. Kit subscriptions are managed on this separate page: Manage Subscription

Science & Math$_{/yr}

Science Only$_{/yr}
Is 13 a prime number? How do you know?
List all the factor pairs of 20.
When do you know that you have found all factor pairs?
access all lessons
• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida• No credit card required •
"My students loved the videos. I started the video subscription in May and used them as a review before the state test, which I know contributed to 100% of my class passing the state test."
Rhonda Fox 4th Grade Teacher, Ocala, Florida• No credit card required •
Already a member? Sign In
* no credit card required *
* no credit card required *
* no credit card required *
no credit card required
Skip, I will use a 3 day free trial
Enjoy your free 30 days trial

Unlimited access to our full library
of videos & lessons for grades K5. 
You won’t be billed unless you keep your
account open past your 14day free trial. 
You can cancel anytime in 1 click on the
manage account page or by emailing us.

Unlimited access to our full library of videos & lessons for grades K5.

You won't be billed unless you keep your account open past 14 days.

You can cancel anytime in 1click on the manage account page.
Cancel anytime in 1click on the manage account page before the trial ends and you won't be charged.
Otherwise you will pay just $10 CAD/month for the service as long as your account is open.
Cancel anytime on the manage account page in 1click and you won't be charged.
Otherwise you will pay $10 CAD/month for the service as long as your account is open.
We just sent you a confirmation email. Enjoy!
DonePlease login or join.