facebook Read About The Electromagnetic Spectrum | Science for Grades 6-8 [Printable]
1%
Processing, please wait...
It was processed successfully!
Reading Material

Read About the Electromagnetic Spectrum

Download as PDF   Go Back to Lesson
Electromagnetic Spectrum | Reading Material | Grades 6-8
WHAT IS THE ELECTROMAGNETIC SPECTRUM?

Electromagnetic radiation is a type of wave that transfers energy. These waves range from low-energy, long-wavelength radio waves to high-energy, short-wavelength gamma rays. In between are microwaves, infrared waves, visible light, ultraviolet light, and X-rays.

To better understand the electromagnetic spectrum…

WHAT IS THE ELECTROMAGNETIC SPECTRUM?. Electromagnetic radiation is a type of wave that transfers energy. These waves range from low-energy, long-wavelength radio waves to high-energy, short-wavelength gamma rays. In between are microwaves, infrared waves, visible light, ultraviolet light, and X-rays. To better understand the electromagnetic spectrum…

LET’S BREAK IT DOWN!

Waves and Their Characteristics

Waves and Their Characteristics

Waves are repeating patterns that transfer energy and not matter, like a “wave” travelling around a stadium as fans stand up and sit down without moving away from their seats. Examples of waves include sound waves, water waves, and electromagnetic waves. All waves can be described by their amplitude, frequency, and wavelength. Amplitude is the height of a wave from its resting point. Waves with larger amplitude transfer more energy. For example, louder sound waves have a larger amplitude than quieter sound waves. Frequency measures how many waves pass a point in one second. For example a wave that passes a given point three times in 1 second has a frequency of 3. Wavelength is the distance from one wave peak to the next. Wavelength and frequency are related to each other. When the wavelength is shorter, more waves pass in one second, so the frequency is higher. And when the wavelength is longer, the frequency is lower. The frequency of waves is also related to the amount of energy they transfer. High-frequency waves, like gamma waves, transfer more energy than low-frequency waves, like radio waves.

Waves and Their Characteristics Waves are repeating patterns that transfer energy and not matter, like a “wave” travelling around a stadium as fans stand up and sit down without moving away from their seats. Examples of waves include sound waves, water waves, and electromagnetic waves. All waves can be described by their amplitude, frequency, and wavelength. Amplitude is the height of a wave from its resting point. Waves with larger amplitude transfer more energy. For example, louder sound waves have a larger amplitude than quieter sound waves. Frequency measures how many waves pass a point in one second. For example a wave that passes a given point three times in 1 second has a frequency of 3. Wavelength is the distance from one wave peak to the next. Wavelength and frequency are related to each other. When the wavelength is shorter, more waves pass in one second, so the frequency is higher. And when the wavelength is longer, the frequency is lower. The frequency of waves is also related to the amount of energy they transfer. High-frequency waves, like gamma waves, transfer more energy than low-frequency waves, like radio waves.

Electromagnetic Spectrum: Radio Waves and Microwaves

Electromagnetic Spectrum: Radio Waves and Microwaves

Electromagnetic waves are created when charged particles move, and these waves occur along a spectrum of different wavelengths. Although the electromagnetic spectrum is continuous, scientists divide it into seven sections based on wavelength. Radio waves have very long wavelengths, and gamma rays have very short wavelengths. In between are microwaves, infrared waves, visible light, ultraviolet light, and X-rays.

Radio waves have long wavelengths that can be the length of a ruler or longer. In addition to being used to send radio signals, radio waves are used to send WiFi signals, phone calls, and text messages. Radio waves can pass through walls and reach inside buildings, but they cannot pass through everything. They can be blocked by special metal cages called Faraday cages.

Microwaves have shorter wavelengths than radio waves, and they range from less than 1 meter down to 1 millimeter. Microwave ovens use microwaves to heat up food. They can do this because microwaves with a specific wavelength will cause water molecules in the food to vibrate faster, which causes the water to heat up. If you microwave things without much water in them, like plastic or ceramic, they don't warm up nearly as much.