In this lesson, students learn that making 10 is an efficient strategy to determine the total number of objects when two sets of the same object are combined. As a precursor to learning their basic addition facts, students learn how to make a ten as a means to make sense of the facts.

An effective way for students to develop an understanding of the make-10 strategy begins with hands-on experience. Students should have access to a variety of counters such as buttons, toy cars, cubes, chips, links, etc. The counters should be placed in two groups to model the two numbers that are being combined, such as a group of 8 and a group of 3. The students can rearrange the counters to model making 10 using a ten frame.
Facilitate their understanding that the counters now show 10 and 1 more. Students should know that 10 and 1 more is 11. By making 10, they have changed the addition problem from $8 + 3$ to $10 + 1$. Students can then model other combinations and repeat the exercise.

USING DOUBLES TO ADD

In developing number fluency, students learn that to double a number, they add it to itself. For example, $3 + 3 = 6$. They may also know doubles as friendly numbers. Students tend to memorize doubles facts faster than other facts as they are more “interesting.” However, students may each only remember a handful of doubles facts. When students are working with doubles within 20 for the first time, having students help you build a doubles fact list on the board or on paper to post in the classroom can be a useful activity and a tool for students to use while they are building fluency.

COUNTING BACK AND COUNTING ON TO SUBTRACT

When introducing the counting back and counting on strategies to perform subtraction students can use counters to model the operation. To solve $15 - 6$, for example, a student might display 15 counters, then count aloud as they remove six counters to determine how many remain. As students count back, draw their attention to when they have subtracted enough to make the remaining amount 10. Using ten-frames to show the initial amount can help students spot this. Recognizing when they make it to 10 is important as students frequently struggle with subtractions that “cross 10.” Thinking of it as subtracting to 10 then subtracting the rest from 10 can help students be more successful and build fluency. Use the same focus as students count forward from the subtrahend. Have students identify when they have made a 10, then count on to find the “some more.”

TEACHER TIPS

When applying these strategies, students are looking for structure in different ways. The strategy they choose to apply will depend on the structure that they have spotted in the current problem. Different students will see different structures when looking at numbers. Make sure students know that it is perfectly fine to approach the problem in different ways. One of the great things about mathematics is that there are often many different ways you can solve any given problem.